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Abstract The availability of high density panels of

molecular markers has prompted the adoption of genomic

selection (GS) methods in animal and plant breeding. In

GS, parametric, semi-parametric and non-parametric

regressions models are used for predicting quantitative

traits. This article shows how to use neural networks with

radial basis functions (RBFs) for prediction with dense

molecular markers. We illustrate the use of the linear

Bayesian LASSO regression model and of two non-linear

regression models, reproducing kernel Hilbert spaces

(RKHS) regression and radial basis function neural net-

works (RBFNN) on simulated data and real maize lines

genotyped with 55,000 markers and evaluated for several

trait–environment combinations. The empirical results of

this study indicated that the three models showed similar

overall prediction accuracy, with a slight and consistent

superiority of RKHS and RBFNN over the additive

Bayesian LASSO model. Results from the simulated data

indicate that RKHS and RBFNN models captured epi-

static effects; however, adding non-signal (redundant)

predictors (interaction between markers) can adversely

affect the predictive accuracy of the non-linear regression

models.

Introduction

The availability of high density panels of molecular

markers has catalyzed the adoption of genomic selection

(GS) methods in animal and plant breeding (Meuwissen

et al. 2001); empirical evidence has demonstrated a supe-

riority of marker-based models over pedigree-based models

for predicting complex traits (e.g., VanRaden 2008; Hayes

et al. 2009; de los Campos et al. 2009a; Crossa et al. 2010,

2011). However, most applications of GS use additive

linear regression models, and there may be still opportu-

nities for increasing prediction accuracy even further by

capturing non-additive sources of genetic variability such

as dominance or epistasis.

Evidence of epistatic effects in plant traits is vast

(Holland 2001, 2006). For instance, Dudley (2008) found

the presence of epistasis in oil, protein, and starch in dif-

ferent crosses of maize lines, and Dudley and Johnson

(2010) reported that adding two locus interactions to the

model increases prediction power. Despite this, experi-

ments performed in maize have not provided sizable esti-

mates of epistatic variance components (Hallauer and

Miranda 1981), perhaps reflecting the fact that even highly

epistatic systems generate a great deal of additive variance

(e.g., Hill et al. 2008). Also, there is a lack of well-estab-

lished methods for incorporating epistasis in the prediction
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of complex traits in plant breeding programs (Hallauer and

Miranda 1981; Bernardo 2002).

Interactions between marker alleles at two or more loci

can be accommodated in a linear model using appropriate

contrasts. However, this is feasible only when the number

of markers (p) is moderate. In GS, however, p is usually

large, making parametric modeling of complex epistatic

interactions unfeasible. An alternative is to use semi-

parametric regressions (e.g., Gianola et al. 2006), such as

kernel-based methods (e.g., Wahba 1978; Gianola et al.

2006; Gianola and van Kaam 2008) or neural networks

(NNs) (Gianola et al. 2011), with the expectation that such

procedures can capture complex higher order interaction

patterns. The use of reproducing kernel Hilbert spaces

(RKHS) for prediction of complex traits was first proposed

by Gianola et al. (2006), and empirical studies have dem-

onstrated good prediction accuracy in plant (e.g., Crossa

et al. 2010, 2011; de los Campos et al. 2010) and chicken

data (Gonzalez-Recio et al. 2008; Long et al. 2010).

However, a potential limitation of RKHS regressions is that

the basis functions used for regression must be defined

a priori.

In NN, the basis functions are inferred from the data,

giving NN great potential for capturing complex interac-

tions between predictor variables (Hastie et al. 2009).

Such flexibility comes at the price of a substantial

increase in computational demands and the risk of over-

fitting the training data. Radial basis function neural

networks (RBFNNs) are a particular class of NN that have

features that make them attractive for applications in GS.

First, it has been shown that RBFNNs have universal

approximation properties (e.g., Park and Sandberg 1991).

Second, RBFNN combines, in a single framework, fea-

tures of NNs and of RKHS, and both approaches have

been widely shown to be promising for predicting phe-

notypes of complex traits. Further, algorithms exist [e.g.,

the orthogonal least-squares method proposed by Chen

et al. (1991)] that make the computational burden of fit-

ting a RBFNN much less than that of a comparable

standard NN.

The RBFNNs have been applied as a prediction and

classification tool in many different domains (Jayawardena

and Fernando 1998; Takasaki and Kawamura 2007; Zheng

et al. 2011). However, they have not been evaluated in the

context of genomic selection. In this article, we (1) review

the concepts of RBFNN, (2) discuss the connection

between these methods and RKHS regressions, and (3)

compare the predictive performance of RBFNN with that

of RKHS and of an additive linear regression model

(Bayesian LASSO). We also illustrate the use of these

models on simulated and real maize lines genotyped with

high density markers and evaluated for several trait–envi-

ronment combinations.

Materials and methods

Simulated data sets

This data set was simulated by Zhang and Xu (2005) and

has a sample size of 600 individuals. The genome has a

single chromosome (1,800 cM long) and 121 evenly

spaced markers with a 15 cM per marker interval. The

authors simulated 9 main QTL effects and 13 interactions

between different QTL effects; all QTL effects overlapped

with markers. Each QTL had a contribution to phenotypic

variance that varied from 0.5–20 %. Models were fitted to

two simulated data sets, including the 121 evenly spaced

marker covariates indicating the genotype of the jth mar-

ker, and the 121(121 ? 1)/2 = 7,381 marker 9 marker

first order interactions.

Maize data sets

The maize data represent 21 trait–environment combina-

tions measured in 300 tropical inbred lines genotyped with

55,000 SNPs each. First, we considered eight trait–envi-

ronment combinations including four traits [grain yield

(GY), female flowering (FFL) or days to silking, male

flowering time (MFL) or days to anthesis, and anthesis-

silking interval (ASI)], each evaluated under severe

drought stress (SS) and in well-watered (WW) environ-

ments. This data set was previously used by Crossa et al.

(2010) for the assessment of prediction performance of the

BL and RKHS methods, but using only 1,148 SNPs.

Second, the 300 maize lines were evaluated in 9 inter-

national environments for gray leaf spot (GLS), a disease

caused by the fungus Cercospora zeae-maydis, which is

pandemic in Africa. Now recognized as one of the most

significant yield-limiting diseases of maize worldwide,

GLS is associated with the rapid adoption of conservation

agriculture techniques. The 9 environments for GLS had

appreciable levels of disease infection. Third, grain yields

(GY) of these 300 maize lines were also measured in a

large number of relatively high yielding environments

(GY-HI) and low yielding environments (GY-LO). Finally,

phenotypes for northern corn leaf blight (NCLB), a disease

caused by the fungus Exserohilum turcicum, were taken

from disease trials evaluated in two environments.

Linear and non-linear regressions on marker genotypes

In GS, phenotypes ðyi; i ¼ 1; . . .; nÞ are regressed on p

marker covariates using a regression function that maps

from marker genotypes xij 2 f0; 1; 2g onto the real line,

that is f ðxi1; . . .; xipÞ. Methods differ on (a) how

f ðxi1; . . .; xipÞ is structured (e.g., linear vs. non-linear

functions of marker genotypes) and (b) how the parameters
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are estimated. In all models, the response variable was

described as the sum of an effect common to all lines (l), a

genetic value f(xi), and a model residual �ei, that is,

�yi ¼ lþ f xið Þ þ �ei

Residuals were assumed to be independent draws from

a normal distribution with null mean and variance equal to
r2

e
ni
, where ni is defined below. Models differed in how

marker information was used to describe f(xi). Phenotypes

were standardized within trait-by-environment combination;

therefore, in all cases the response was �yi ¼ 1
SD�ni

Pni

k¼1 yik,

where ni is the number of replicates available for the ith

trait-by-environment combination, and SD is the sample

standard deviation of the within trait-by-environment line

means.

Linear model

In linear additive models for GS (e.g., Meuwissen et al.

2001), f ðxi1; . . .; xipÞ is a weighted sum of allele dosage,

that is, f ðxi1; . . .; xipÞ ¼ b0 þ
Pp

j¼1 xijbj, where b0 is an

intercept and fbjgp
j¼1 are marker effects. In practice, the

number of markers can vastly exceed the number of

records; therefore, shrinkage estimation procedures are

commonly used to estimate marker effects. This approach

has been used successfully for predicting genetic values in

plants and animals. However, the additive specification

may not be optimal if dominance or epistasis effects make

a sizeable contribution to total genetic variance. As stated,

the linear additive model can be extended to accommodate

dominance or epistasis by adding the appropriate effects.

However, when p is large, modeling complex epistatic

patterns using interactions is not feasible.

Here, genetic values are represented using a linear

regression on marker genotypes and marker effects were

estimated using the Bayesian LASSO of Park and Casella

(2008), as implemented in the BLR package of R (de los

Campos and Pérez 2010). Further details about this model

and about the algorithms implemented in BLR can be

found in de los Campos et al. (2009a) and Pérez et al.

(2010). These articles also provide general guidelines for

choosing hyper-parameters which were followed here to

determine (1) the prior scale (S), (2) the degrees of freedom

(df) of the scaled-inverse Chi-square distribution assigned

to the residual variance, and (3) the shape (s) and rate (r)

parameter of the gamma distribution assigned to the reg-

ularization parameter. In our implementation, df was set

equal to 4 and the scale was set to 1, this gives a prior

density with a prior expectation equal to 0.5 (i.e., one half

of the sample variance of the standardized phenotypes)

and it is relatively flat around its mode. Pérez et al. (2010)

also provide guidelines for choosing the rate and shape

parameters of the BL and the proposed approach is to

choose these hyper-parameters so that the prior has a mode

that is relatively flat in the neighborhood of

k̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1� h2ð Þ

h2
MSx

r

where MSx is the average (across subjects) sum of squares

of marker genotypes. This quantity varies across data sets.

Here, we set the rate and shape parameters to 1 9 10-4 and

0.6, respectively; these values give a prior that has a mode

close to 30 and is flat in a relatively wide range of values

for k̂:

Reproducing kernel Hilbert spaces (RKHS) regression

The RKHS model has been suggested as an alternative to

the linear model. Its proponents (e.g., Gianola et al. 2006)

have argued that such a procedure may capture complex

interaction patterns that may not be accounted for in the

linear model, and simulations as well as empirical evidence

have hinted a superiority of this approach over linear

models for predicting phenotypes for some traits (e.g., de

los Campos et al. 2009b, 2010; Crossa et al. 2010). In a

RKHS model, the regression function takes the following

form:

f xið Þ ¼ b0 þ
Xn

i0¼1

ai0K xi; xi0ð Þ ð1Þ

where xi ¼ ðxi1; . . .; xipÞ0 and xi0 ¼ ðxi01; . . .; xi0pÞ0 are vec-

tors of marker genotypes, ai0are regression coefficients, and

Kðxi; xi0 Þ is a positive definite function (the reproducing

kernel, RK) evaluated in a pair of lines which are denoted

by i and i0. This can be, for example, a Gaussian kernel,

Kðxi; xi0 Þ ¼ expf�hkxi � xi0 k2g, where h is a bandwidth

parameter and kxi � xi0 k is the Euclidean distance between

the vectors of marker genotypes in lines i and i’. The RK

provides a set of n basis functions, fKðxi; xi0 Þgn
i¼1, which

are non-linear on marker genotypes; however, the regres-

sion function is simply a linear combination of the basis

functions provided by the RK. To prevent over-fitting, the

vector of regression coefficients, ða1; . . .; anÞ, is estimated

using shrinkage estimation procedures such as penalized or

Bayesian regressions. Clearly, the set of basis functions is

defined a priori via the choice of kernel, and an inappro-

priate selection may limit the ability of RKHS to capture

complex patterns.

As stated above, in this model the regression function

is linear on the RK. We used a Gaussian kernel,

together with a strategy of kernel averaging (KA, de los

Campos et al. 2010), for implicit selection of optimal

values of the bandwidth parameter. In particular, we defined

three extreme kernels: K1ðxi; xi0 ; h1Þ ¼ expð� h1

q05
� d2

ii0 Þ,
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K2ðxi; xi0 ; h2Þ ¼ expð� h2

q05
� d2

ii0 Þ, and K3ðxi; xi0 ; h3Þ ¼ exp

ð� h3

q05
� d2

ii0 Þ, where d2
ii0 ¼

Pp
j¼1

ðxij�xi0 jÞ
2

Vj
is a standardized

squared Euclidean distance, Vj is the sample variance of the

jth marker, q05 is the 5th percentile of d2
ii0 , and h1 ¼

5; h2 ¼ 1; h3 ¼ 1=5 are values of the bandwidth parame-

ter, such that K1ðxi; xi0 ; h1Þ gives extremely local basis

functions and K3ðxi; xi0 ; h3Þ gives basis functions with a

much wider span. Figure 4 (Appendix 1) gives a histogram

(for the ASI-SS maize data set) of the off-diagonal entries

of the three kernels. K1 has very small off-diagonal values,

K2 gives off-diagonal values concentrated in the [0.2, 0.6]

interval and K3 gives off-diagonal values concentrated in

the [0.7, 0.9] interval.

Kernel averaging was implemented using Bayesian

methods, as described by de los Campos et al. (2010). The

joint prior distribution of this Bayesian RKHS regression has

eight hyper-parameters; the prior scale (S) and degrees of

freedom (df) of the scaled-inverse Chi-square distribution

assigned to the residual variance, and those of the distribu-

tions assigned to the variances associated with each of the

three RK (the scale and the degrees of freedom hyper-

parameters). In our implementation, we set the df = 4,

because this gives relatively un-informative priors, and chose

the scale parameters so that (1) the prior expectation of the

residual variance was one half of the sample variance of the

standardized phenotypes (in our case S ¼ ðdf � 2Þ=2 ¼ 1)

and (2) the prior expectation of the variance of each of the

kernels was 1/6 of the sample variance of standardized phe-

notypes (in our case S ¼ ðdf � 2Þ=6 ¼ 1=3).

Single hidden layer neural network

In a NN, the basis functions are inferred from the data,

which give NN great flexibility in terms of capturing

complex patterns. The rest of this section gives an over-

view of these procedures. We begin by reviewing a stan-

dard single hidden layer NN for a continuous response with

the RBFNN introduced subsequently.

A graphical representation of a single hidden layer neural

network is given in Fig. 1. This NN can be thought of as a two-

stage regression (e.g., Hastie et al. 2009). In the first stage

(hidden layer), M data-derived basis functions, fzmigi¼n;m¼M
i¼1;m¼1 ,

are inferred; in the second stage (the output layer), the

response is regressed on the basis functions (inferred in the

hidden layer) using a non-linear procedure (Fig. 1).

In the hidden layer, one data-derived predictor (or basis

function) is inferred at each of M neurons. These data-

derived predictors are formed by first inferring a score

(umi), which is a linear combination of the input variables

(marker genotypes, in our case), and then transforming this

score using a non-linear activation function, uð�Þ, that is

Hidden 

layer

Input

Output

layer

ipiji xxx ......1

)( 11 ii uz ϕ= )( mimi uz ϕ= )( MiMi uz ϕ=…

…

…

…

( ) i

M

m mmii wzwy εϕ ++= ∑ =10

∑ =
+= p

j mjijmmi wxwu
10∑ =

+= p

j jiji wxwu
1 1011 ∑ =

+= p

j MjijMMi wxwu
10

Fig. 1 Graphical representation of a single hidden layer feed-

forward neural network (NN). In the hidden layer, input variables

xi ¼ ðxi1; . . .; xipÞ (j ¼ 1; . . .; p markers) are combined using a linear

function, umi ¼ wm0 þ
Pp

j¼1 xijwmj (m = 1,…,M), and subsequently

transformed using a non-linear activation function, umð�Þ, yielding a

set of M (M = number of neurons) inferred scores, zmi ¼ umðumiÞ.
These scores are used in the output layer as basis functions to regress

the response using the linear activation function on the data-derived

predictors yi ¼ uðw0 þ
PM

m¼1 zmiwmÞ þ ei; uð�Þ could be either an

identity or any other function
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zmi ¼ umðumiÞ ¼ umðwm0 þ
Pp

j¼1 xijwmjÞ, where wm0 is an

intercept (also referred to as ‘bias’ term), and wm ¼
fwmjgm¼M;j¼p

m¼1;j¼1 is a vector of regression coefficients (the so-

called ‘weights’).

Subsequently, in the output layer, phenotypes are

regressed on the data-derived features, fzmigi¼n;m¼M
i¼1;m¼1 ,

according to yi ¼ uðw0 þ
PM

m¼1 zmiwmÞ þ ei, where uð�Þ is

usually a linear activation function and ei is a model

residual. For a continuous outcome, uð�Þ, may simply be an

identity link, so that yi ¼ w0 þ
PM

m¼1 zmiwm þ ei. Model

specification in NN refers to the choice of architecture (i.e.,

the number of hidden layers and of neurons per hidden

layer) and the type of activation function.

The activation function is a monotonic map from a score

defined in the real line onto the interval [0, 1] (for a sig-

moid function) or onto the interval [-1, 1] (for a hyperbolic

tangent function). For example, the sigmoid function is

zmi ¼ umðumi; hÞ ¼ 1
1þexpð�h umiÞ, where h is a parameter

controlling the shape of the activation function. The use of

data-derived predictors and activation functions, together

with the possibility of using multiple neurons and layers,

gives NN great flexibility for capturing complex interaction

patterns between predictors; however, the computational

burden can be extremely high and over-fitting may occur.

Radial basis function neural network

The RBFNN was first proposed by Broomhead and Lowe

(1988) and Poggio and Girosi (1990), who applied regu-

larization theory to solve ill-conditioned problems in the

approximation/interpolation of a function. Figure 2 gives a

graphical display of a single hidden layer RBFNN with M

neurons (M B n). The output layer is exactly as that shown

for NN in Fig. 1; the main difference between the standard

NN and an RBFNN is how the hidden layer is structured,

that is, how the basis functions are inferred. In an RBFNN,

the basis functions consist of a pre-determined number of

radial basis functions (RBFs), each of which is indexed by

parameters (e.g., centroid; see below for further explana-

tion) to be estimated from the data.

A radial basis function, wð�Þ, is a map of pairs of vec-

tors, fxi; cg, onto the real line, with the peculiarity that the

map depends only on the Euclidean distance between the

two vectors (input vector, xi, and centroid vector, c), that is,

wðxi; cÞ ¼ wðkxi � ckÞ. The Gaussian kernel is a particular

case of this. The illustration in Fig. 2 uses a Gaussian RBF;

however, the methodology can be applied using other

RBFs, such as splines, multi-quadrics, etc. For a given set

of centroids fc1; . . .; cMg (M vectors each of order p), the

set of parameters involved in an RBFNN (the weights of

the output layer, x ¼ fw0; :w1:;wMg) can include a large

ipiji xxx ......1

Hidden 

layer

Input

Output

layer

)exp( mimi uz −=)exp( 11 ii uz −= )exp( MiMi uz −=

2
111 |||| cx −= ii hu

2|||| mimmi hu cx −= 2|||| MiMMi hu cx −=

( ) i

M

m mmii wzwy εψ ++= ∑ =10

Fig. 2 Graphical representation of a single hidden layer (Gaussian)

radial basis function neural network (RBFNN). In the hidden layer,

information from input variables ðxi1; . . .; xipÞ (j ¼ 1; . . .; p markers)

is first summarized by means of the Euclidean distance between each

of the input vectors {xi} with respect to M (data-inferred)

(M = number of neurons) centers {cm}, that is umi ¼ hmjjxi � cmjj2.

These distances are then transformed using the Gaussian function,

zmi ¼ expð�umiÞ, yielding M data-derived scores. These scores are

used in the output layer as basis functions for the linear regression,

yi ¼ wðw0 þ
PM

m¼1 zmiwmÞ þ ei; wð�Þ is usually an identity function
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number of unknowns; thus, shrinkage estimation methods

may be needed. The regularization approach for solving a

learning (approximation/interpolation) problem is to search

for a function f ðxi;xÞ that approximates the training set of

response data; this function has input vectors, xi 2 Rp (the

domain of the function), responses yi 2 R; ði ¼ 1; . . .; nÞ,
and the weight vector x. In other words, we need to find

the functional U½f ðxi;xÞ� that minimizes the cost function

H½f ðxi;xÞ� (Poggio and Girosi 1990; Kecman 2001),

H f xi;xð Þ½ � ¼
arg min

x

Xn

i¼1

yi � f xi;xð Þð Þ2 þ kU f xi;xð Þ½ �

where
Pn

i¼1 ðyi � f ðxi;xÞÞ2 is a residual sum of squares

between the response yi and the approximating function

f ðxi;xÞ (i.e., a measure of goodness-of-fit); k is a small,

positive number (the Lagrange multiplier), also called the

regularization parameter, that controls the trade-off

between fitness and model complexity; U½f ðxi;xÞ� is a

measure of complexity of f ðxi;xÞ and a penalty function

also called a stabilizer that enforces the smoothness of

f ðxi;xÞ. The regularization parameter k, which is com-

monly proportional to the extent of noise in data, deter-

mines the influence of this stabilizer and controls the

trade-off between the two terms of H½f ðxi;xÞ�. The sta-

bilizer (or penalty) function U½f ðxi;xÞ� can take several

forms (i.e., spline, multi-quadric, radial basis, Gaussian,

etc.).

When U½f ðxi;xÞ� takes a symmetrical radial form, a

particular regularized solution that minimizes H½f ðxi;xÞ� is
given by the linear combination of the Gaussian RBFs

(Poggio and Girosi 1990; Kecman 2001):

f xi;xð Þ ¼ w0 þ
XM

m¼1

wmwm xi � cmk kð Þ

where w0 is the intercept, wm are the weights of the linear

layer, cm are the centers of the RBFs and wmðkxi � ckÞ ¼
exp½�hkxi � cmk2� are Gaussian RBFs that depend only

on the Euclidean norm of the difference vector xi � cm.

The weights (wm), the centroids (cm), and h are estimated in

such a way that the fit between f ðxi;xÞ and the desired

response is optimum.

Estimating the parameters of the RBFNN

To estimate the parameters of a RBFNN, the weights wm of

the linear output layer are determined using the ordinary

least-squares method, once the RBF (Gaussian in this case)

wmð�Þ (0 \ m B M), their corresponding centers, and the

bandwidth h of the RBF have been assigned values. Several

methods are available for selecting the centers (Haykin

1994); in this study, the centroids were selected using the

orthogonalization least-squares procedure proposed by

Chen et al. (1991). This method sequentially selects the

centers of the RBF such that each new selected center is

orthogonal to the previous ones. The selected centers

maximize the decrease in the mean squared error of the

RBFNN, and the algorithm stops when the number of

centers attains a desired precision, or when the number of

centers is equal to the number of input vectors, that is,

when M = n.

Relationship between RBFNN and RKHS

The RBFNN is closely related to RKHS regression.

In particular, if in Fig. 2 we let the activation function

of the output layer be the identity function wðw0þ
PM

m¼1 zmiwmÞ ¼ w0 þ
PM

m¼1 zmiwm and the number of

neurons be equal to n, with cm ¼ xi0 , then the structure of

the conditional expectation function of the RKHS regres-

sion and the structure of the RBFNNs are exactly the same.

In the RBFNN, the strategy is to select a set of basis

functions by estimating centers (cm), and each center

defines a basis function. Typically, the number of centers

(or neurons, in this case) is much smaller than the number

of data points. The strategy in RKHS regression is differ-

ent: a large set of basis functions is offered to the algorithm

(at least n, one per data point, and more, when kernel

averaging is used; see Eq. [1]), but the contribution of each

of these basis functions to the conditional expectation (i.e.,

the a’s) is estimated using shrinkage estimation procedures.

In the statistical learning literature, this is known as

‘automatic knot selection’ (Ruppert et al. 2003) and is the

strategy used by the smoothing spline (Wahba 1990).

Arguably, the performance of an RBFNN could be

improved if a shrinkage estimation procedure was used,

instead of the least-squares method of Chen et al. (1991),

but the latter is computationally simpler.

Model comparison

The predictive ability of the additive Bayesian LASSO

linear model, RKHS, and the RBFNN was evaluated. A

total of 50 independent random partitions of each of the 23

data sets into training (90 % of the data points) and testing

(10 % of the data points) were generated. For each of these

partitions, models were fitted to the training set data, and

prediction accuracy was evaluated in the testing data set.

Accuracy was assessed by means of Pearson’s correlation

between predictions and observations and by the predictive

mean squared error (PMSE ¼ n�1
tst

Pntest

i¼1 ð�yi � �̂yiÞ
2
, where �̂yi

is the predicted value), both evaluated in testing data sets of

size ntst.

764 Theor Appl Genet (2012) 125:759–771

123



The number of times a given model had a higher cor-

relation (or smaller PMSE) than another was counted and

represented in a graph, to produce a visual assessment of

the ‘‘winner’’ models in terms of correlation and PMSE.

Results

The average (across 50 training–testing partitions) corre-

lations between predictions and observations obtained with

the simulated and real data sets are given in Table 1.

Results for PMSE are given in Table 2 (Appendix 2).

Given the similarity of results for correlations and PMSE,

here we will concentrate on correlations only.

Simulated data sets

The analysis involving 121 marker covariates showed a

marked superiority of RKHS (correlation 0.757) and of

RBFNN (correlation 0.770) over the Bayesian LASSO

(correlation 0.643). Here, RBFNN outperformed RKHS

slightly. These results confirm that RKHS and RBFNN are

able to capture patterns (perhaps generated by epistatic

effects) that cannot be detected by a linear model for

additive effects.

However, when marker main effects and two-marker

interactions were fitted, the performance of the linear

model increased markedly (correlation 0.797) and that

of the semi-parametric procedures decreased (average

Table 1 Mean correlation of three models, Bayesian LASSO (BL),

reproducing kernel Hilbert space (RKHS) regression, and radial basis

function neural network (RBFNN), and the number of times one

model has a higher correlation than the other (RKHS [ BL,

RBFNN [ BL, and RKHS [ RBFNN) for 50 random partitions for

each of 23 individual data sets (trait–environment combinations) and

across 21 maize data sets

Trait–environment BL Mean correlation Number of times a model is better than the other

RKHS RBFNN RKHS [ BL RBFNN [ BL RKHS [ RBFNN

Simulated data sets

121 Markers 0.643 0.757 0.770 50 50 5

7,381 Markers 0.797 0.547 0.547 0 0 26

Maize data sets

FFL-WW 0.814 0.836 0.834 37 32 34

FFL-SS 0.754 0.763 0.757 30 32 22

MFL-WW 0.817 0.841 0.832 37 32 36

MFL-SS 0.776 0.782 0.780 31 36 27

ASI-WW 0.582 0.586 0.594 27 32 23

ASI-SS 0.612 0.621 0.605 34 23 31

GY-SS 0.326 0.330 0.288 28 13 36

GY-WW 0.557 0.548 0.529 16 13 33

GY-HI 0.633 0.663 0.653 37 37 24

GY-LOW 0.410 0.402 0.393 37 31 30

GLS 1 0.220 0.259 0.260 12 20 21

GLS 2 0.419 0.439 0.431 36 17 35

GLS 3 0.590 0.579 0.582 23 25 22

GLS 4 0.522 0.544 0.506 20 24 20

GLS 5 0.346 0.332 0.344 39 38 23

GLS 6 0.284 0.263 0.278 9 25 18

GLS 7 0.477 0.502 0.508 36 16 38

GLS 8 0.596 0.584 0.592 42 29 31

GLS 9 0.522 0.544 0.506 24 21 26

NCBL 1 0.644 0.709 0.691 49 45 40

NCBL 2 0.478 0.491 0.525 34 36 15

Combined 21 maize trait–environments

0.542 0.553 0.547 688 627 616

FFL female flowering, MFL male flowering, ASI MFL to FFL interval, GY grain yield, SS severe drought stress, WW well-watered environment,

HI optimum environment, LOW stress environment, GLS Cercospora zeae-maydis, NCLB Exserohilum turcicum
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correlation 0.547, for both RKHS and RBFNN). These

results indicate that, for non-linear models, the information

on interaction between predictors incorporated into the

input space becomes redundant in the feature space. On the

other hand, for the linear model, the information on the

marker 9 marker interaction incorporated in the input

space is useful to predict the feature space. The linear

model was able to detect this via estimates of regression

coefficients which weight the contribution of each

marker to the estimated conditional expectation. On the

other hand, in both RBFNN and RKHS, each marker gets

a similar weight in the basis function or kernel, and the

effect of adding non-signal covariates reduces method

performance.

Maize data sets

Overall, that is, averaged across training–testing partitions,

the three methods performed similarly, with only a slight

superiority of RKHS (average correlation 0.553) over

RBFNN (average correlation 0.547) and the linear model

(average correlation 0.542) (Table 1). Similarly, RKHS

had a slightly smaller average PMSE (0.645) than RBFNN

(0.656) and BL (0.658) (Table 2).

Figure 3a–b (and Fig. 5a–b in Appendix 2) gives the

correlations (and PMSE) obtained with RKHS versus BL,

and RBFNN versus BL. In these figures, each dot repre-

sents the estimated correlations (and PMSE) for each of the

two methods included in the plot and corresponds to one of

the 1,050 analyses (21 trait–environment combina-

tions 9 50 training–testing partitions) conducted. A point

above the 45� line represents an analysis where the method

whose predictive correlation (and PMSE) is given on the

vertical axis outperformed the one whose correlation

(and PMSE) is given on the horizontal axis. Although there

is a slight overall superiority of RKHS and RBFNN over

the linear model (they outperformed the linear model 66

and 60 % of the times, respectively; see Table 1), the

average performance across traits and environments was

similar.

Flowering (FFM, MFL, ASI)

For traits FFL and MFL (Table 1), the three models

achieved high prediction accuracy (correlations over 0.75),

whereas for ASI they achieved moderate correlations.

These results are in agreement with those reported by

Crossa et al. (2010) for these traits. For FFL and MFL, the

predictive accuracy obtained under well-watered condi-

tions was higher and more stable (across partitions) than

that obtained under drought stress. For these traits, we

observed, in general, a slight superiority (1–3 % in the

correlation) of RKHS or RBFNN over the additive

Bayesian LASSO.

Grain yield

For yield traits (Table 1) we obtained moderately high

correlations in well-watered (GY-WW) and high-yield

environments (GY-HI), and a lower predictive perfor-

mance under drought stress (GY-SS) and low-yield envi-

ronments (GY-LO). These results highlight the difficulties

of predicting performance under stress conditions and

reinforce the importance of having a precise phenotypic

system for controlling local plot-to-plot variability in field

trials under restrictive conditions. The analysis of GY traits

showed slightly better prediction of BL and RKHS over

RBFNN.

Gray leaf spot

Estimated predictive correlations ranged from 0.220 to

0.596, depending mostly on environment. Although there

were some differences across models, their ranking was not

clear; the BL, RKHS and RBFNN methods were best in 4,

3 and 2 of the 9 environments, respectively.

Northern corn leaf blight

The estimated predictive correlations for these trait–envi-

ronment combinations were moderate to high, and in the

two environments we observed better performance of the

semi-parametric procedures: RKHS was best in environ-

ment 1 and RBFNN was best in environment 2.

Discussion and conclusions

Our empirical results, in which 21 maize data sets rep-

resented different traits and environments, indicated that

the three models considered had a very similar overall

prediction accuracy, with a slight superiority of RKHS

and RBFNN over the additive Bayesian LASSO model. In

general, these results are similar and sometimes slightly

better than other findings using similar data sets. The

sample size (300 maize lines) may be a limiting factor for

obtaining better discrimination between the predictive

accuracy of these models. Results from the simulated data

suggest that, for non-linear models, introducing interac-

tions between predictors (markers) in the input space may

not be necessary for predicting the feature space; how-

ever, this interaction information in the input space is

necessary (but feasible to be incorporated in real
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situations) when the feature space is predicted by means

of a linear model. These results were confirmed when

using real data.

The simulated data example not only shows that RKHS

or RBFNN can capture epistatic patterns, but also indicates

that adding non-signal predictors (as might happen using

55 K, 100 K or denser platforms) can adversely affect the

predictive accuracy of these models, because in the current

formulations of RKHS and RBFNN all markers are equally

weighted. Possible ways to overcome this problem would
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Fig. 3 Plot of the correlation for each of 50 partitions in each of 21

trait–environment combinations for different combinations of models.

In a when the best model is RKHS, this is represented by a white

circle; when the best model is BL, this is represented by a black
circle. In b when best model is RBFNN, this is represented by a white
circle; when the best model is BL, this is represented by a black circle

Theor Appl Genet (2012) 125:759–771 767

123



be to (1) introduce unknown marker weights in the kernel,

which could be computationally challenging; (2) use

arbitrary weights or pre-selecting markers based on an ad-

hoc procedure (e.g., single marker regression or infor-

mation gain); or (3) obtain haplotypes and examine their

prediction accuracy. This is an issue that requires further

study.

Given the hundreds of thousands of markers, including

all pair-wise (or higher order) interactions among markers

in linear models becomes a difficult and almost impossible

problem to solve. As pointed out initially by Gianola et al.

(2006), and subsequently corroborated by Long et al.

(2010), non-parametric models do not impose strong

assumptions on the phenotype–genotype relationship and

allow capturing interactions among loci. The results of

these real data sets, comprising maize trials conducted to

measure several traits under a wide range of environmental

conditions, agreed with previous findings in animal

breeding and with simulated experiments in the sense that

sometimes a non-parametric treatment of markers may

account for epistatic effects that are not captured by linear

additive regression models.

The two kernel models considered, RBFNN and RKHS,

had some similarities and displayed good predictive abili-

ties in several trait–environment combinations. While

RKHS with kernel averaging is robust for any combination

of traits and environments, the two non-parametric models,

RBFNN and RKHS, seem to be useful for predicting

quantitative traits with complex underlying gene action

under varying types of interaction with different environ-

mental conditions. While the additive linear model seems

to be robust when hundreds of non-signal predictors are

included in the model, the degraded performance of RKHS

and RBFNN when a large number of non-signal markers

are added to the model requires further investigation, along

the previously described lines.

Although parametrically estimating all possible

regression coefficients in a linear model is not feasible

for large p, it is possible to make further improvements

on the accuracy of the RKHS and RBFNN models by

introducing differential weights in SNPs, as shown by

Long et al. (2011) for RBFs. Further, the output layer of

the RBFNN used in this study does not use a regularized

regression but, rather, ordinary least squares. Using a

shrinkage regression model for the output layer of the

RBFNN may offer an extra increase in accuracy. This

needs further investigation in the context of genomic

prediction.
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Appendix 2
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Fig. 4 Histograms of the off-

diagonal entries of each of the

three kernels used (K1, K2, K3)

in the RKHS model for the ASI-

SS maize data set
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Table 2 Mean predicted mean squared error (PMSE) of three models,

Bayesian LASSO (BL), reproducing kernel Hilbert space (RKHS)

regression, and radial basis function neural network (RBFNN), and

the number of times one model has a higher correlation than the other

(RKHS [ BL, RBFNN [ BL, and RKHS[RBFNN) for 50 random

partitions for each of 23 individual data sets (trait–environment

combination) and across 21 maize data sets

Trait–environment BL Mean PMSE Number of times a model is better than the other

RKHS RBFNN RKHS [ BL RBFNN [ BL RKHS [ RBFNN

Simulated data sets

121 Markers 0.583 0.431 0.404 50 50 4

7,381 Markers 0.371 0.699 0.693 0 0 19

Maize data sets

FFL-WW 0.249 0.219 0.202 34 34 23

FFL-SS 0.342 0.330 0.337 31 28 28

MFL-WW 0.251 0.221 0.220 32 31 32

MFL-SS 0.319 0.311 0.311 28 27 27

ASI-WW 0.649 0.650 0.642 24 31 20

ASI-SS 0.654 0.649 0.670 27 21 27

GY-SS 0.888 0.888 0.927 29 11 32

GY-WW 0.675 0.693 0.706 16 14 29

GY-HI 0.595 0.571 0.575 36 26 27

GY-LOW 0.843 0.855 0.874 34 29 30

GLS 1 0.957 0.918 0.959 13 19 24

GLS 2 0.832 0.815 0.824 30 15 37

GLS 3 0.621 0.635 0.632 26 20 29

GLS 4 0.730 0.713 0.751 25 20 29

GLS 5 0.819 0.817 0.837 37 36 21

GLS 6 0.969 0.971 0.994 13 25 22

GLS 7 0.756 0.729 0.724 26 15 35

GLS 8 0.616 0.630 0.621 37 32 27

GLS 9 0.732 0.712 0.750 23 16 32

NCBL 1 0.595 0.519 0.534 49 47 32

NCBL 2 0.724 0.708 0.68 35 40 15

Combined 21 maize trait–environments

0.658 0.645 0.656 655 587 601

FFL female flowering, MFL male flowering, ASI MFL to FFL interval, GY grain yield, SS severe drought stress, WW well-watered environment,

HI optimum environment, LOW stress environment, GLS Cercospora zeae-maydis, NCLB Exserohilum turcicum
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